numpy.ma.masked_values()
function return a MaskedArray, masked where the data in array arr are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose.
Syntax : numpy.ma.masked_values(arr, value, rtol = 1e-05, atol = 1e-08, copy = True, shrink = True)
Parameter :
arr : [array_like] Array to mask.
value : [float] Masking value.
rtol, atol : [float, optional] Must be convertible to an array of booleans with the same shape as data. True indicates a masked data.
copy : [bool, optional] Whether to return a copy of arr.
shrink : [bool, optional] Whether to collapse a mask full of False to nomask.Return : [MaskedArray] The result of masking arr where approximately equal to value.
Code #1 :
# Python program explaining # numpy.ma.masked_values() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.array([ 1 , 1.5 , 2 , 1.5 , 3 ]) gfg = ma.masked_values(arr, 1.5 ) print (gfg) |
Output :
[1.0 -- 2.0 -- 3.0]
Code #2 :
# Python program explaining # numpy.ma.masked_values() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.array([ 1 , 2 , 3 , 4 , 5 , 6 ]) gfg = ma.masked_values(arr, 4 ) print (gfg) |
Output :
[1 2 3 -- 5 6]