numpy.ma.fix_invalid()
function return input with invalid data masked and replaced by a fill value. Where invalid data means values of nan, inf, etc.
Syntax : numpy.ma.fix_invalid(arr, mask = False, copy = True, fill_value = None)
Parameter :
arr : [array_like] Input array.
mask : [sequence, optional] Must be convertible to an array of booleans with the same shape as data. True indicates a masked data.
copy : [bool, optional] Whether to use a copy of a (True) or to fix a in place (False). Default is True.
fill_value : [scalar, optional] Value used for fixing invalid data. Default is None, in which case the arr.fill_value is used.Return : [MaskedArray] The input array with invalid entries fixed.
Code #1 :
# Python program explaining # numpy.ma.fix_invalid() function # importing numpy as geek import numpy as geek arr = geek.ma.array([ 1. , - 1 , geek.nan, geek.inf], mask = [ 1 ] + [ 0 ] * 3 ) gfg = geek.ma.fix_invalid(arr) print (gfg) |
Output :
[-- -1.0 -- --]
Code #2 :
# Python program explaining # numpy.ma.fix_invalid() function # importing numpy as geek import numpy as geek arr = geek.ma.array([ 1. , - 1 , geek.nan, geek.inf, - 1 , geek.nan], mask = [ 1 ] + [ 0 ] * 5 ) gfg = geek.ma.fix_invalid(arr) print (gfg) |
Output :
[-- -1.0 -- -- -1.0 --]