In this article we will see how we can set the element structure of the dilate of image in mahotas. Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object boundaries. The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring element used to process the image. In order to dilate the image we use mahotas.morph.dilate method.By setting element structure we can increase or decrease the dilating effect on the image.
In this tutorial we will use “luispedro” image, below is the command to load it.
mahotas.demos.load('luispedro')
Below is the luispedro image
Implementation steps :
1. Load the image
2. Filter the image
3. Use otsu method for threshold of the image
4. Create a structure of the element with the help of numpy ndarray for binary values
5. Use the element for dilating the image
Below is the implementation
Python3
# importing required libraries import mahotas import mahotas.demos from pylab import gray, imshow, show import numpy as np # loading image luispedro = mahotas.demos.load( 'luispedro' ) # filtering image luispedro = luispedro. max ( 2 ) # otsu method T_otsu = mahotas.otsu(luispedro) # image values should be greater than otsu value img = luispedro > T_otsu print ( "Image threshold using Otsu Method" ) # showing image imshow(img) show() # erode structure es = np.array([ [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ]], bool ) # dilating image dilate_img = mahotas.morph.dilate(img, es) # showing dilated image print ( "Dilated Image" ) imshow(dilate_img) show() |
Output :
Image threshold using Otsu Method
Dilated Image
Another example
Python3
# importing required libraries import mahotas import numpy as np import matplotlib.pyplot as plt import os # loading image img = mahotas.imread( 'dog_image.png' ) # setting filter to the image img = img[:, :, 0 ] # otsu method T_otsu = mahotas.otsu(img) # image values should be greater than otsu value img = img > T_otsu print ( "Image threshold using Otsu Method" ) # showing image imshow(img) show() # erode structure es = np.array([ [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 ]], bool ) # dilating image dilate_img = mahotas.morph.dilate(img, es) # showing dilated image print ( "Dilated Image" ) imshow(dilate_img) show() |
Output :
Image threshold using Otsu Method
Dilated Image