Tensorflow bitwise.bitwise_xor()
method performs the bitwise_xor operation and the result will set those bits, that are different in a and b. The operation is done on the representation of a and b. This method belongs to bitwise module.
Syntax:
tf.bitwise.bitwise_xor(a, b, name=None)
Arguments
- a: This must be a Tensor.It should be from the one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64.
- b: This should also be a Tensor, Type same as a.
- name: This is optional parameter and this is the name of the operation.
Return: It returns a Tensor having the same type as a and b.
Example 1:
# Importing the Tensorflow library import tensorflow as tf # A constant a and b a = tf.constant( 43 , dtype = tf.int32) b = tf.constant( 5 , dtype = tf.int32) # Applying the bitwise_xor function # storing the result in 'c' c = tf.bitwise.bitwise_xor(a, b) # Initiating a Tensorflow session with tf.Session() as sess: print ( "Input 1" , a) print (sess.run(a)) print ( "Input 2" , b) print (sess.run(b)) print ( "Output: " , c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_36:0", shape=(), dtype=int32) 43 Input 2 Tensor("Const_37:0", shape=(), dtype=int32) 5 Output: Tensor("BitwiseXor_4:0", shape=(), dtype=int32) 46
Example 2:
# Importing the Tensorflow library import tensorflow as tf # A constant vector of size 2 a = tf.constant([ 10 , 6 ], dtype = tf.int32) b = tf.constant([ 12 , 5 ], dtype = tf.int32) # Applying the bitwise_xor function # storing the result in 'c' c = tf.bitwise.bitwise_xor(a, b) # Initiating a Tensorflow session with tf.Session() as sess: print ( "Input 1" , a) print (sess.run(a)) print ( "Input 2" , b) print (sess.run(b)) print ( "Output: " , c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_34:0", shape=(2, ), dtype=int32) [10 6] Input 2 Tensor("Const_35:0", shape=(2, ), dtype=int32) [12 5] Output: Tensor("BitwiseXor_3:0", shape=(2, ), dtype=int32) [6 3]
<!–
–>
Please Login to comment…