With the help of ratint_logpart() method, we can integrate the indefinite rational function by implementing Lazard Rioboo Trager algorithm by using this method and returns the integrated polynomial.
Syntax : ratint_logpart(f, g, x, t=None)
Return : Return the integrated function.
Example #1 :
In this example we can see that by using ratint_logpart() method, we are able to compute the indefinite rational integration using Lazard Rioboo Trager algorithm.
Python3
# import ratint_logpart from sympy.integrals.rationaltools import ratint_logpart from sympy.abc import x from sympy import Poly # Using ratint_logpart() method gfg = ratint_logpart(Poly( 1 , x, domain = 'ZZ' ), Poly(x * 2 + x + 1 , x, domain = 'ZZ' ), x) print (gfg) |
Output :
[(Poly(3*x + 1, x, domain=’ZZ’), Poly(-3*_t + 1, _t, domain=’ZZ’))]
Example #2 :
Python3
# import ratint_logpart from sympy.integrals.rationaltools import ratint_logpart from sympy.abc import x, y from sympy import Poly # Using ratint_logpart() method gfg = ratint_logpart(Poly( 10 , y, domain = 'ZZ' ), Poly(y * * 2 - 3 * y - 2 , y, domain = 'ZZ' ), y) print (gfg) |
Output :
[(Poly(y – 17*_t/20 – 3/2, y, domain=’QQ[_t]’), Poly(-17*_t**2 + 100, _t, domain=’ZZ’))]