Saturday, November 16, 2024
Google search engine
HomeLanguagesPython3 Program for Range Queries for Frequencies of array elements

Python3 Program for Range Queries for Frequencies of array elements

Given an array of n non-negative integers. The task is to find frequency of a particular element in the arbitrary range of array[]. The range is given as positions (not 0 based indexes) in array. There can be multiple queries of given type. 
Examples: 
 

Input  : arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11};
         left = 2, right = 8, element = 8
         left = 2, right = 5, element = 6      
Output : 3
         1
The element 8 appears 3 times in arr[left-1..right-1]
The element 6 appears 1 time in arr[left-1..right-1]

Naive approach: is to traverse from left to right and update count variable whenever we find the element. 
Below is the code of Naive approach:- 
 

Python3




# Python program to find total 
# count of an element in a range
 
# Returns count of element
# in arr[left-1..right-1]
def findFrequency(arr, n, left, right, element):
 
    count = 0
    for i in range(left - 1, right):
        if (arr[i] == element):
            count += 1
    return count
 
 
# Driver Code
arr = [2, 8, 6, 9, 8, 6, 8, 2, 11]
n = len(arr)
 
# Print frequency of 2 from position 1 to 6
print("Frequency of 2 from 1 to 6 = ",
        findFrequency(arr, n, 1, 6, 2))
 
# Print frequency of 8 from position 4 to 9
print("Frequency of 8 from 4 to 9 = ",
        findFrequency(arr, n, 4, 9, 8))
         
     
# This code is contributed by Anant Agarwal.


Output: 

 Frequency of 2 from 1 to 6 = 1
 Frequency of 8 from 4 to 9 = 2

Time complexity of this approach is O(right – left + 1) or O(n) 
Auxiliary space: O(1)
An Efficient approach is to use hashing. In C++, we can use unordered_map

  • At first, we will store the position in map[] of every distinct element as a vector like that 
  int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11};
  map[2] = {1, 8}
  map[8] = {2, 5, 7}
  map[6] = {3, 6} 
  ans so on...
  • As we can see that elements in map[] are already in sorted order (Because we inserted elements from left to right), the answer boils down to find the total count in that hash map[] using binary search like method. 
     
  • In C++ we can use lower_bound which will returns an iterator pointing to the first element in the range [first, last] which has a value not less than ‘left’. and upper_bound returns an iterator pointing to the first element in the range [first,last) which has a value greater than ‘right’. 
     
  • After that we just need to subtract the upper_bound() and lower_bound() result to get the final answer. For example, suppose if we want to find the total count of 8 in the range from [1 to 6], then the map[8] of lower_bound() function will return the result 0 (pointing to 2) and upper_bound() will return 2 (pointing to 7), so we need to subtract the both the result like 2 – 0 = 2 . 
     

Below is the code of above approach 

Python3




# Python3 program to find total count of an element
from collections import defaultdict as dict
from bisect import bisect_left as lower_bound
from bisect import bisect_right as upper_bound
 
store = dict(list)
 
# Returns frequency of element
# in arr[left-1..right-1]
def findFrequency(arr, n, left, right, element):
     
    # Find the position of
    # first occurrence of element
    a = lower_bound(store[element], left)
 
    # Find the position of
    # last occurrence of element
    b = upper_bound(store[element], right)
 
    return b - a
 
# Driver code
arr = [2, 8, 6, 9, 8, 6, 8, 2, 11]
n = len(arr)
 
# Storing the indexes of
# an element in the map
for i in range(n):
    store[arr[i]].append(i + 1)
 
# Print frequency of 2 from position 1 to 6
print("Frequency of 2 from 1 to 6 = ",
       findFrequency(arr, n, 1, 6, 2))
 
# Print frequency of 8 from position 4 to 9
print("Frequency of 8 from 4 to 9 = ",
       findFrequency(arr, n, 4, 9, 8))
 
# This code is contributed by Mohit Kumar


Output: 
 

Frequency of 2 from 1 to 6 = 1
Frequency of 8 from 4 to 9 = 2

This approach will be beneficial if we have a large number of queries of an arbitrary range asking the total frequency of particular element.
Time complexity: O(log N) for single query. 
Please refer complete article on Range Queries for Frequencies of array elements for more details!
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments