Given an array of n non-negative integers. The task is to find frequency of a particular element in the arbitrary range of array[]. The range is given as positions (not 0 based indexes) in array. There can be multiple queries of given type.
Examples:
Input : arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; left = 2, right = 8, element = 8 left = 2, right = 5, element = 6 Output : 3 1 The element 8 appears 3 times in arr[left-1..right-1] The element 6 appears 1 time in arr[left-1..right-1]
Naive approach: is to traverse from left to right and update count variable whenever we find the element.
Below is the code of Naive approach:-
Python3
# Python program to find total # count of an element in a range # Returns count of element # in arr[left-1..right-1] def findFrequency(arr, n, left, right, element): count = 0 for i in range (left - 1 , right): if (arr[i] = = element): count + = 1 return count # Driver Code arr = [ 2 , 8 , 6 , 9 , 8 , 6 , 8 , 2 , 11 ] n = len (arr) # Print frequency of 2 from position 1 to 6 print ( "Frequency of 2 from 1 to 6 = " , findFrequency(arr, n, 1 , 6 , 2 )) # Print frequency of 8 from position 4 to 9 print ( "Frequency of 8 from 4 to 9 = " , findFrequency(arr, n, 4 , 9 , 8 )) # This code is contributed by Anant Agarwal. |
Output:
Frequency of 2 from 1 to 6 = 1 Frequency of 8 from 4 to 9 = 2
Time complexity of this approach is O(right – left + 1) or O(n)
Auxiliary space: O(1)
An Efficient approach is to use hashing. In C++, we can use unordered_map
- At first, we will store the position in map[] of every distinct element as a vector like that
int arr[] = {2, 8, 6, 9, 8, 6, 8, 2, 11}; map[2] = {1, 8} map[8] = {2, 5, 7} map[6] = {3, 6} ans so on...
- As we can see that elements in map[] are already in sorted order (Because we inserted elements from left to right), the answer boils down to find the total count in that hash map[] using binary search like method.
- In C++ we can use lower_bound which will returns an iterator pointing to the first element in the range [first, last] which has a value not less than ‘left’. and upper_bound returns an iterator pointing to the first element in the range [first,last) which has a value greater than ‘right’.
- After that we just need to subtract the upper_bound() and lower_bound() result to get the final answer. For example, suppose if we want to find the total count of 8 in the range from [1 to 6], then the map[8] of lower_bound() function will return the result 0 (pointing to 2) and upper_bound() will return 2 (pointing to 7), so we need to subtract the both the result like 2 – 0 = 2 .
Below is the code of above approach
Python3
# Python3 program to find total count of an element from collections import defaultdict as dict from bisect import bisect_left as lower_bound from bisect import bisect_right as upper_bound store = dict ( list ) # Returns frequency of element # in arr[left-1..right-1] def findFrequency(arr, n, left, right, element): # Find the position of # first occurrence of element a = lower_bound(store[element], left) # Find the position of # last occurrence of element b = upper_bound(store[element], right) return b - a # Driver code arr = [ 2 , 8 , 6 , 9 , 8 , 6 , 8 , 2 , 11 ] n = len (arr) # Storing the indexes of # an element in the map for i in range (n): store[arr[i]].append(i + 1 ) # Print frequency of 2 from position 1 to 6 print ( "Frequency of 2 from 1 to 6 = " , findFrequency(arr, n, 1 , 6 , 2 )) # Print frequency of 8 from position 4 to 9 print ( "Frequency of 8 from 4 to 9 = " , findFrequency(arr, n, 4 , 9 , 8 )) # This code is contributed by Mohit Kumar |
Output:
Frequency of 2 from 1 to 6 = 1 Frequency of 8 from 4 to 9 = 2
This approach will be beneficial if we have a large number of queries of an arbitrary range asking the total frequency of particular element.
Time complexity: O(log N) for single query.
Please refer complete article on Range Queries for Frequencies of array elements for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!