Tensorflow bitwise.bitwise_or()
method performs the bitwise_or operation and return those bits set, that are either set(1) in a or in b or in both. The operation is done on the representation of a and b.
This method belongs to bitwise module.
Syntax:
tf.bitwise.bitwise_or( a, b, name=None)
Arguments
- a: This must be a Tensor.It should be from the one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64.
- b: This should also be a Tensor, Type same as a.
- name: This is optional parameter and this is the name of the operation.
Return: It returns a Tensor having the same type as a and b.
Example 1:
# Importing the Tensorflow library import tensorflow as tf # A constant a and b a = tf.constant( 43 , dtype = tf.int32) b = tf.constant( 5 , dtype = tf.int32) # Applying the bitwise_or function # storing the result in 'c' c = tf.bitwise.bitwise_or(a, b) # Initiating a Tensorflow session with tf.Session() as sess: print ( "Input 1" , a) print (sess.run(a)) print ( "Input 2" , b) print (sess.run(b)) print ( "Output: " , c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_22:0", shape=(), dtype=int32) 43 Input 2 Tensor("Const_23:0", shape=(), dtype=int32) 5 Output: Tensor("BitwiseOr_1:0", shape=(), dtype=int32) 47
Example 2:
# Importing the Tensorflow library import tensorflow as tf # A constant vector of size 2 a = tf.constant([ 1 , 6 ], dtype = tf.int32) b = tf.constant([ 2 , 5 ], dtype = tf.int32) # Applying the bitwise_or function # storing the result in 'c' c = tf.bitwise.bitwise_or(a, b) # Initiating a Tensorflow session with tf.Session() as sess: print ( "Input 1" , a) print (sess.run(a)) print ( "Input 2" , b) print (sess.run(b)) print ( "Output: " , c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_20:0", shape=(2, ), dtype=int32) [1 6] Input 2 Tensor("Const_21:0", shape=(2, ), dtype=int32) [2 5] Output: Tensor("BitwiseOr:0", shape=(2, ), dtype=int32) [3 7]
<!–
–>
Please Login to comment…