Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas TimedeltaIndex.notnull()
function detect all the non-missing values from the given TimedeltaIndex object. The function is similar to TimedeltaIndex.notna()
.
Syntax : TimedeltaIndex.notnull()
Parameters : None
Return : a boolean array of whether the values are not NA
Example #1: Use TimedeltaIndex.notnull()
function to detect all the non-missing values from the given TimedeltaIndex object.
# importing pandas as pd import pandas as pd # Create the TimedeltaIndex object tidx = pd.TimedeltaIndex(data = [ '06:05:01.000030' , None , '22 day 2 min 3us 10ns' , '+23:59:59.999999' , None , '+12:19:59.999999' ]) # Print the TimedeltaIndex object print (tidx) |
Output :
Now we will use the TimedeltaIndex.notnull()
function to detect all the non-missing values from the tidx object.
# find all non-missing values tidx.notnull() |
Output :
As we can see in the output, the TimedeltaIndex.notnull()
function has returned a boolean array which contains True
value corresponding to the non-missing values and False
value corresponding to the missing values.
Example #2: Use TimedeltaIndex.notnull()
function to detect all the non-missing values from the given TimedeltaIndex object.
# importing pandas as pd import pandas as pd # Create the TimedeltaIndex object tidx = pd.TimedeltaIndex(data = [ None , '1 days 06:05:01.000030' , None , '1 days 02:00:00' , '21 days 06:15:01.000030' ]) # Print the TimedeltaIndex object print (tidx) |
Output :
Now we will use the TimedeltaIndex.notnull()
function to detect all the non-missing values from the tidx object.
# find all non-missing values tidx.notnull() |
Output :
As we can see in the output, the TimedeltaIndex.notnull()
function has returned a boolean array which contains True
value corresponding to the non-missing values and False
value corresponding to the missing values.