In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.
Panel.clip_lower()
function is used to return copy of the input with values below a threshold truncated.
Syntax: Panel.clip_lower(threshold, axis=None, inplace=False)
Parameters:
threshold : Minimum value allowed. All values below threshold will be set to this value.
float : every value is compared to threshold.
array-like : The shape of threshold should match the object it’s compared to.
axis : Align self with threshold along the given axis.
inplace : Whether to perform the operation in place on the data.Returns: same type as input.
Code #1: Creating a Panel using from_dict()
# importing pandas module import pandas as pd import numpy as np df1 = pd.DataFrame({ 'a' : [ 'Geeks' , 'For' , 'neveropen' ], 'b' : np.random.randn( 3 )}) data = { 'item1' :df1, 'item2' :df1} # creating Panel panel = pd.Panel.from_dict(data, orient = 'minor' ) print (panel, "\n" ) |
Output:
Code #2: Using clip_lower()
# importing pandas module import pandas as pd import numpy as np df1 = pd.DataFrame({ 'a' : [ 'Geeks' , 'For' , 'neveropen' ], 'b' : np.random.randn( 3 )}) data = { 'item1' :df1, 'item2' :df1} # creating Panel panel = pd.Panel.from_dict(data, orient = 'minor' ) print (panel, "\n" ) print (panel[ 'b' ], '\n' ) df2 = pd.DataFrame({ 'b' : [ 11 , 12 , 13 ]}) print (panel[ 'b' ].clip_lower(df2[ 'b' ], axis = 0 )) |
Output:
Code #3:
# creating an empty panel import pandas as pd import numpy as np data = { 'Item1' : pd.DataFrame(np.random.randn( 7 , 4 )), 'Item2' : pd.DataFrame(np.random.randn( 4 , 5 ))} pen = pd.Panel(data) print (pen[ 'Item1' ], '\n' ) p = pen[ 'Item1' ][ 0 ].clip_lower(np.random.randn( 7 )) print (p) |
Output: