numpy.MaskedArray.swapaxes()
function is used to Return a view of the masked array with axis1 and axis2 interchanged.
Syntax :
numpy.ma.swapaxes(axis1, axis2)
Parameters:
axis1 :[int] First axis.
axis2 : [int] Second axis.Return : [ swapped_array] Resultant array.
Code #1 :
# Python program explaining # numpy.MaskedArray.swapaxes() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[ 1 , 2 ], [ 3 , - 1 ], [ 5 , - 3 ]]) print ( "Input array : " , in_arr) # Now we are creating a masked array. # by making entry as invalid. mask_arr = ma.masked_array(in_arr, mask = [[ 1 , 0 ], [ 0 , 1 ], [ 0 , 0 ]]) print ( "Masked array : " , mask_arr) # applying MaskedArray.swapaxes methods # to masked array out_arr = mask_arr.swapaxes( 0 , 1 ) print ( "Output swapped masked array : " , out_arr) |
Input array : [[ 1 2] [ 3 -1] [ 5 -3]] Masked array : [[-- 2] [3 --] [5 -3]] Output swapped masked array : [[-- 3 5] [2 -- -3]]
Code #2 :
# Python program explaining # numpy.MaskedArray.swapaxes() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[[ 2e8 , 3e - 5 ]], [[ - 45.0 , 2e5 ]]]) print ( "Input array : " , in_arr) # Now we are creating a masked array. # by making one entry as invalid. mask_arr = ma.masked_array(in_arr, mask = [[[ 1 , 0 ]], [[ 0 , 0 ]]]) print ( "3D Masked array : " , mask_arr) # applying MaskedArray.swapaxes methods # to masked array out_arr = mask_arr.swapaxes( 0 , 2 ) print ( "Output swapped masked array : " , out_arr) |
Input array : [[[ 2.0e+08 3.0e-05]] [[-4.5e+01 2.0e+05]]] 3D Masked array : [[[-- 3e-05]] [[-45.0 200000.0]]] Output swapped masked array : [[[-- -45.0]] [[3e-05 200000.0]]]