Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
matplotlib.axis.Tick.get_transformed_clip_path_and_affine() Function
The Tick.get_transformed_clip_path_and_affine() function in axis module of matplotlib library is used to get the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation.
Syntax: Tick.get_transformed_clip_path_and_affine(self) Parameters: This method does not accepts any parameter. Return value: This method return the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation.
Below examples illustrate the matplotlib.axis.Tick.get_transformed_clip_path_and_affine() function in matplotlib.axis: Example 1: Image Used
Python3
# Implementation of matplotlib function from matplotlib.axis import Tick import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.cbook as cbook with cbook.get_sample_data( 'image.PNG' ) as image_file: image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) patch = patches.Rectangle(( 10 , 10 ), 100 , 100 , transform = ax.transData) val = Tick.get_transformed_clip_path_and_affine(im) ax.set_title( "Value Return by get_transformed_clip_path_and_affine(): " + str (val)) fig.suptitle( """matplotlib.axis.Tick.get_transformed_clip_path_and_affine()\n function Example\n""" , fontweight = "bold") plt.show() |
Output: Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Tick import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch delta = 0.025 x = y = np.arange( - 3.0 , 3.0 , delta) X, Y = np.meshgrid(x, y) Z1 = np.exp( - X * * 2 - Y * * 2 ) Z2 = np.exp( - (X - 1 ) * * 2 - (Y - 1 ) * * 2 ) Z = (Z1 - Z2) * 2 path = Path([[ 0 , 1 ], [ 1 , 0 ], [ 0 , - 1 ], [ - 1 , 0 ], [ 0 , 1 ]]) patch = PathPatch(path, facecolor = 'none' ) fig, ax = plt.subplots() ax.add_patch(patch) im = ax.imshow(Z, interpolation = 'bilinear' , cmap = cm.gray, origin = 'lower' , extent = [ - 3 , 3 , - 3 , 3 ], clip_path = patch, clip_on = True ) # use of get_transformed_clip_path_and_affine() method val = Tick.get_transformed_clip_path_and_affine(im) print ( "Value Return by get_transformed_clip_path_and_affine(): " ) for i in val: print (i) fig.suptitle( """matplotlib.axis.Tick.get_transformed_clip_path_and_affine()\n function Example\n""" , fontweight = "bold") plt.show() |
Output:
Value Return by get_transformed_clip_path_and_affine(): Path(array([[ 0., 1.], [ 1., 0.], [ 0., -1.], [-1., 0.], [ 0., 1.]]), None) Affine2D( [[ 82.66666667 0. 328. ] [ 0. 61.6 237.6 ] [ 0. 0. 1. ]])