Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
matplotlib.axis.Tick.get_picker() Function
The Tick.get_picker() function in axis module of matplotlib library is used to define the picking behavior of the artist.
Syntax: Tick.get_picker(self)
Parameters: This method does not accepts any parameter.
Return value: This method return the picking behavior of the artist.
Below examples illustrate the matplotlib.axis.Tick.get_picker() function in matplotlib.axis:
Example 1:
Python3
# Implementation of matplotlib function from matplotlib.axis import Tick import numpy as np import matplotlib.pyplot as plt np.random.seed( 19680801 ) volume = np.random.rayleigh( 7 , size = 40 ) amount = np.random.poisson( 7 , size = 40 ) ranking = np.random.normal(size = 40 ) price = np.random.uniform( 1 , 7 , size = 40 ) fig, ax = plt.subplots() scatter = ax.scatter(volume * * 3 , amount * * 3 , c = ranking * * 3 , s = price * * 4 , vmin = - 3 , vmax = 3 , cmap = "Spectral" ) ax.text( 8 , 8 , "Value return : " + str (Tick.get_picker(ax)), fontweight = "bold" , fontsize = 18 ) fig.suptitle( """matplotlib.axis.Tick.get_picker() function Example\n""" , fontweight = "bold") plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Tick import numpy as np import matplotlib.pyplot as plt X = np.random.rand( 10 , 200 ) xs = np.mean(X, axis = 1 ) ys = np.std(X, axis = 1 ) fig = plt.figure() ax = fig.add_subplot( 111 ) line, = ax.plot(xs, ys, 'go-' , picker = 5 ) ax.set_picker( True ) ax.text( 0.48 , 0.3 , "Value return : " + str (Tick.get_picker(ax)), fontweight = "bold" , fontsize = 18 ) fig.suptitle( """matplotlib.axis.Tick.get_picker() function Example\n""" , fontweight = "bold") plt.show() |
Output: