Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
Matplotlib.axis.Axis.set_path_effects() Function
The Axis.set_path_effects() function in axis module of matplotlib library is used to set the path effects.
Syntax: Axis.set_path_effects(self, path_effects)
Parameters: This method accepts the following parameters.
- path_effects : This parameter is the AbstractPathEffect.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.set_path_effects() function in matplotlib.axis:
Example 1:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import matplotlib.pyplot as plt import numpy as np import matplotlib.patheffects as path_effects fig, ax = plt.subplots() t = ax.text( 0.02 , 0.5 , 'GeeksForGeeks' , fontsize = 40 , weight = 1000 , va = 'center' ) Axis.set_path_effects(t, [path_effects.PathPatchEffect(offset = ( 4 , - 4 ), hatch = 'xxxx' , facecolor = 'lightgreen' ), path_effects.PathPatchEffect(edgecolor = 'white' , linewidth = 1.1 , facecolor = 'blue' )]) fig.suptitle('matplotlib.axis.Axis.set_path_effects() \ function Example\n', fontweight = "bold" ) plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects import numpy as np fig, ax1 = plt.subplots() ax1.imshow([[ 1 , 2 ], [ 2 , 3 ]]) txt = ax1.annotate( "Fourth Qaud" , ( 1. , 1. ), ( 0. , 0 ), arrowprops = dict (arrowstyle = "->" , connectionstyle = "angle3" , lw = 2 ), size = 20 , ha = "center" , path_effects = [PathEffects.withStroke(linewidth = 3 , foreground = "w" )]) Axis.set_path_effects(txt.arrow_patch, [ PathEffects.Stroke(linewidth = 5 , foreground = "w" ), PathEffects.Normal()]) ax1.grid( True , linestyle = "-" ) pe = [PathEffects.withStroke(linewidth = 3 , foreground = "w" )] for l in ax1.get_xgridlines() + ax1.get_ygridlines(): Axis.set_path_effects(l, pe) fig.suptitle('matplotlib.axis.Axis.set_path_effects() \ function Example\n', fontweight = "bold" ) plt.show() |
Output: