Sunday, November 17, 2024
Google search engine
HomeData Modelling & AITernary Search Tree (Deletion)

Ternary Search Tree (Deletion)

In the SET 1 post on TST we have described how to insert and search a node in TST. In this article, we will discuss algorithm on how to delete a node from TST.

During delete operation we delete the key in bottom-up manner using recursion. The following are possible cases when deleting a key from trie.

  1. Key may not be there in TST. 
    Solution: Delete operation should not modify TST.
  2. Key present as unique key (no part of key contains another key (prefix), nor the key itself is prefix of another key in TST). 
    Solution: Delete all the nodes.
  3. Key is prefix key of another long key in TST. 
    Solution: Unmark the leaf node.
  4. Key present in TST, having atleast one other key as prefix key. 
    Solution: Delete nodes from end of key until first leaf node of longest prefix key.

Explanation for delete_node function

  1. Let suppose we want to delete string “BIG”,since it is not present in TST so after matching with first character ‘B’, delete_node function will return zero. Hence nothing is deleted.
  2. Now we want to delete string “BUG”, it is Uniquely present in TST i.e neither it has part which is the prefix of other string nor it is prefix to any other string, so it will be deleted completely.
  3. Now we want to delete string “CAT”, since it is prefix of string “CATS”, we cannot delete anything from the string “CAT” and we can only unmark the leaf node which will ensure that “CAT” is no longer a member string of TST.
  4. Now we want to delete string “CATS”, since it has a prefix string “CAT” which also is a member string of TST so we can only delete last character of string “CATS” which will ensure that string “CAT” still remains the part of TST.

Implementation:

C




// C program to demonstrate deletion in
// Ternary Search Tree (TST). For insert
// and other functions, refer
#include<stdio.h>
#include<stdlib.h>
 
// structure of a node in TST
struct Node
{
    char key;
    int isleaf;
    struct Node *left;
    struct Node *eq;
    struct Node *right;
};
 
// function to create a Node in TST
struct Node *createNode(char key)
{
    struct Node *temp =
        (struct Node*)malloc(sizeof(struct Node));
    temp->key = key;
    temp->isleaf = 0;
    temp->left = NULL;
    temp->eq = NULL;
    temp->right = NULL;
    return temp;
};
 
// function to insert a Node in TST
void insert_node(struct Node **root ,char *s)
{
    if (!(*root))
        (*root) = createNode(*s);
 
    if ((*s)<(*root)->key)
        insert_node( &(*root)->left ,s);
 
    else if ((*s)>(*root)->key)
        insert_node( &(*root)->right ,s);
 
    else if ((*s) == (*root)->key)
    {
        if (*(s+1) == '\0')
        {
            (*root)->isleaf = 1;
            return;
        }
        insert_node( &(*root)->eq ,s+1);
    }
}
 
// function to display the TST
void display(struct Node *root, char str[], int level)
{
    if (!root)
        return;
 
    display(root->left ,str ,level);
    str[level] = root->key;
 
    if (root->isleaf == 1)
    {
        str[level+1] = '\0';
        printf("%s\n",str);
    }
 
    display(root->eq ,str ,level+1);
    display(root->right ,str ,level);
}
 
// to check if current Node is leaf node or not
int isLeaf(struct Node *root)
{
    return root->isleaf == 1;
}
 
// to check if current node has any child node or not
int isFreeNode(struct Node *root)
{
    if (root->left ||root->eq ||root->right)
        return 0;
    return 1;
}
 
// function to delete a string in TST
int delete_node(struct Node *root, char str[],
                int level ,int n)
{
    if (root == NULL)
        return 0;
 
 
    // CASE 4 Key present in TST, having
    // atleast one other key as prefix key.
    if (str[level+1] == '\0')
    {
        // Unmark leaf node if present
        if (isLeaf(root))
        {
            root->isleaf=0;
            return isFreeNode(root);
        }
 
        // else string is not present in TST and
        // return 0
        else
            return 0;
    }
    else
    {
        // CASE 3 Key is prefix key of another
        // long key in TST.
        if (str[level] < root->key)
            delete_node(root->left ,str ,level ,n);
        else if (str[level] > root->key)
            delete_node(root->right ,str ,level ,n);
 
        // CASE 1 Key may not be there in TST.
        else if (str[level] == root->key)
        {
            // CASE 2 Key present as unique key
            if( delete_node(root->eq ,str ,level+1 ,n) )
            {
                // delete the last node, neither it
                // has any child
                // nor it is part of any other string
                free(root->eq);
                return !isLeaf(root) && isFreeNode(root);
            }
        }
    }
 
    return 0;
}
 
// Driver function
int main()
{
    struct Node *temp = NULL;
 
    insert_node(&temp ,"CAT");
    insert_node(&temp ,"BUGS");
    insert_node(&temp ,"CATS");
    insert_node(&temp ,"UP");
 
    int level = 0;
    char str[20];
    int p = 0;
 
    printf( "1.Content of the TST before "
            "deletion:\n" );
    display(temp ,str ,level);
 
    level = 0;
    delete_node(temp ,"CAT" ,level ,5);
 
    level = 0;
    printf("\n2.Content of the TST after "
           "deletion:\n");
    display(temp, str, level);
    return 0;
}


C++




// C++ program to demonstrate deletion in
// Ternary Search Tree (TST)
// For insert and other functions, refer
 
#include<bits/stdc++.h>
using namespace std;
 
// structure of a node in TST
struct Node
{
    char key;
    int isleaf;
    struct Node *left;
    struct Node *eq;
    struct Node *right;
};
 
// function to create a node in TST
struct Node *createNode(char key)
{
    struct Node *temp = new Node;
    temp->key = key;
    temp->isleaf = 0;
    temp->left = NULL;
    temp->eq = NULL;
    temp->right = NULL;
    return temp;
};
 
// function to insert a Node in TST
void insert_node(struct Node **root, string s)
{
    if((int)s.length()==0)
        return;
    if (!(*root))
    {
        (*root) = createNode(s[0]);
        // return;
    }
 
    if ((s[0])<(*root)->key)
        insert_node( &(*root)->left, s);
 
    else if ((s[0])>(*root)->key)
        insert_node( &(*root)->right, s);
 
    else if ((s[0]) == (*root)->key)
    {
        if ((int)s.length() == 1)
        {
            (*root)->isleaf = 1;
            return;
        }
        insert_node( &(*root)->eq, s.substr(1));
    }
}
 
// function to display the TST
void display(struct Node *root, char str[], int level)
{
    if (!root)
        return;
 
    display(root->left, str, level);
    str[level] = root->key;
 
    if (root->isleaf == 1)
    {
        str[level+1] = '\0';
        cout<< str <<endl;
    }
 
    display(root->eq, str, level+1);
    display(root->right, str, level);
}
 
//to check if current node is leaf node or not
int isLeaf(struct Node *root)
{
    return root->isleaf == 1;
}
 
// to check if current node has any child
// node or not
int isFreeNode(struct Node *root)
{
    if (root->left ||root->eq ||root->right)
        return 0;
    return 1;
}
 
// function to delete a string in TST
int delete_node(struct Node *root, string str,
                int level, int n)
{
    if (root == NULL)
        return 0;
 
 
    // CASE 4 Key present in TST, having atleast
    // one other key as prefix key.
    if (str[level+1] == '\0')
    {
        // Unmark leaf node if present
        if (isLeaf(root))
        {
            root->isleaf = 0;
            return isFreeNode(root);
        }
 
        // else string is not present in TST and
        // return 0
        else
            return 0;
    }
 
    // CASE 3 Key is prefix key of another long
    // key in TST.
    if (str[level] < root->key)
        return delete_node(root->left, str, level, n);
    if (str[level] > root->key)
        return delete_node(root->right, str, level, n);
 
    // CASE 1 Key may not be there in TST.
    if (str[level] == root->key)
    {
        // CASE 2 Key present as unique key
        if (delete_node(root->eq, str, level+1, n))
        {
            // delete the last node, neither it has
            // any child nor it is part of any other
            // string
            delete(root->eq);
            return !isLeaf(root) && isFreeNode(root);
        }
    }
 
    return 0;
}
 
// Driver function
int main()
{
    struct Node *temp = NULL;
 
    insert_node(&temp, "CAT");
    insert_node(&temp, "BUGS");
    insert_node(&temp, "CATS");
    insert_node(&temp, "UP");
 
    int level = 0;
    char str[20];
    int p = 0;
 
    cout << "1.Content of the TST before deletion:\n";
    display(temp, str, 0);
 
    level = 0;
    delete_node(temp,"CAT", level, 5);
 
    level = 0;
    cout << "\n2.Content of the TST after deletion:\n";
    display(temp, str, level);
    return 0;
}


Python3




# Python 3 program to demonstrate deletion in
# Ternary Search Tree (TST)
# For insert and other functions, refer
 
 
# class of a node in TST
class Node:
    def __init__(self,key):
        self.key=key
        self.isleaf=False
        self.left=None
        self.eq=None
        self.right=None
 
# function to insert a Node in TST
def insert_node(root, s):
 
    if s=='':
        return root
    if not root:
        root = Node(s[0])
 
    if ((s[0])<root.key):
        root.left=insert_node(root.left, s)
 
    elif (s[0]>root.key):
        root.right=insert_node(root.right, s)
    else:
        if (len(s) == 1):
            root.isleaf = True
            return root
        root.eq=insert_node(root.eq, s[1:])
 
    return root
 
# function to display the TST
def display(root, s, level):
    if not root:
        return
 
    display(root.left, s, level)
    s[level] = root.key
 
    if (root.isleaf):
        s[level+1] = ''
        print(''.join(s[:level+1]))
 
    display(root.eq, s, level+1)
    display(root.right, s, level)
 
 
# to check if current node has any child
# node or not
def isFreeNode(root):
    return not (root.left or root.eq or root.right)
 
# function to delete a string in TST
def delete_node(root, s, level):
    if not root:
        return False
 
    # CASE 4 Key present in TST, having atleast
    # one other key as prefix key.
    if level+1 == len(s):
        # Unmark leaf node if present
        if root.isleaf:
            root.isleaf = False
            return isFreeNode(root)
 
        # else string is not present in TST and
        # return 0
        return False
 
    # CASE 3 Key is prefix key of another long
    # key in TST.
    if s[level] < root.key:
        return delete_node(root.left, s, level)
    if s[level] > root.key:
        return delete_node(root.right, s, level)
 
    # CASE 1 Key may not be there in TST.
    if s[level] == root.key and delete_node(root.eq, s, level+1):
        # delete the last node, neither it has
        # any child nor it is part of any other
        # string
        root.eq = None
        return not root.isleaf and isFreeNode(root)
 
    return False
 
 
# Driver function
if __name__ == '__main__':
    temp = None
 
    temp=insert_node(temp, "CAT")
    temp=insert_node(temp, "BUGS")
    temp=insert_node(temp, "CATS")
    temp=insert_node(temp, "UP")
 
    level = 0;s=['']*20
 
    print("1.Content of the TST before deletion:")
    display(temp, s, 0)
 
 
    print("2.Content of the TST after deletion:")
    delete_node(temp,"CAT", level)
    display(temp, s, level)


Javascript




class Node {
    constructor(key) {
        this.key = key;
        this.isleaf = false;
        this.left = null;
        this.eq = null;
        this.right = null;
    }
}
 
function insert_node(root, s) {
    if (s === "") {
        return root;
    }
    if (!root) {
        root = new Node(s[0]);
    }
 
    if (s[0] < root.key) {
        root.left = insert_node(root.left, s);
    } else if (s[0] > root.key) {
        root.right = insert_node(root.right, s);
    } else {
        if (s.length === 1) {
            root.isleaf = true;
            return root;
        }
        root.eq = insert_node(root.eq, s.substring(1));
    }
 
    return root;
}
 
function display(root, s, level) {
    if (!root) {
        return;
    }
 
    display(root.left, s, level);
    s[level] = root.key;
 
    if (root.isleaf) {
        s[level + 1] = "";
        document.write(s.slice(0, level + 1).join(""));
    }
 
    display(root.eq, s, level + 1);
    display(root.right, s, level);
}
 
function isFreeNode(root) {
    return !root.left && !root.eq && !root.right;
}
 
function delete_node(root, s, level) {
    if (!root) {
        return false;
    }
 
    // CASE 4 Key present in TST, having atleast
    // one other key as prefix key.
    if (level + 1 === s.length) {
        // Unmark leaf node if present
        if (root.isleaf) {
            root.isleaf = false;
            return isFreeNode(root);
        }
 
        // else string is not present in TST and
        // return 0
        return false;
    }
 
    // CASE 3 Key is prefix key of another long
    // key in TST.
    if (s[level] < root.key) {
        return delete_node(root.left, s, level);
    }
    if (s[level] > root.key) {
        return delete_node(root.right, s, level);
    }
 
    // CASE 1 Key may not be there in TST.
    if (s[level] === root.key && delete_node(root.eq, s, level + 1))
    {
     
        // delete the last node, neither it has
        // any child nor it is part of any other
        // string
        root.eq = null;
        return !root.isleaf && isFreeNode(root);
    }
 
    return false;
}
 
let temp = null;
 
temp = insert_node(temp, "CAT");
temp = insert_node(temp, "BUGS");
temp = insert_node(temp, "CATS");
temp = insert_node(temp, "UP");
 
let
level = 0;
let s = new Array(20).fill("");
 
console.log("1.Content of the TST before deletion:");
display(temp, s, 0);
 
console.log("2.Content of the TST after deletion:");
delete_node(temp, "CAT", level);
display(temp, s, level);
 
// This code is contributed by Potta Lokesh


C#




// C++ program to demonstrate deletion in
// Ternary Search Tree (TST)
// For insert and other functions, refer
 
using System;
 
class TST {
    // class of a node in TST
    class Node {
        public char key;
        public bool isleaf;
        public Node left, eq, right;
 
        public Node(char key)
        {
            this.key = key;
            isleaf = false;
            left = eq = right = null;
        }
    }
 
    // function to insert a Node in TST
    static Node InsertNode(Node root, string s)
    {
        if (s == "") {
            return root;
        }
        if (root == null) {
            root = new Node(s[0]);
        }
 
        if (s[0] < root.key) {
            root.left = InsertNode(root.left, s);
        }
        else if (s[0] > root.key) {
            root.right = InsertNode(root.right, s);
        }
        else {
            if (s.Length == 1) {
                root.isleaf = true;
                return root;
            }
            root.eq = InsertNode(root.eq, s.Substring(1));
        }
 
        return root;
    }
 
    // function to display the TST
    static void Display(Node root, char[] s, int level)
    {
        if (root == null) {
            return;
        }
 
        Display(root.left, s, level);
        s[level] = root.key;
 
        if (root.isleaf) {
            s[level + 1] = '\0';
            Console.WriteLine(new string(s, 0, level + 1));
        }
 
        Display(root.eq, s, level + 1);
        Display(root.right, s, level);
    }
 
    // to check if current node has any child
    // node or not
    static bool IsFreeNode(Node root)
    {
        return root.left == null && root.eq == null
            && root.right == null;
    }
 
    // function to delete a string in TST
    static bool DeleteNode(ref Node root, string s,
                           int level)
    {
        if (root == null) {
            return false;
        }
 
        // CASE 4 Key present in TST, having atleast
        // one other key as prefix key.
        if (level + 1 == s.Length) {
            // Unmark leaf node if present
            if (root.isleaf) {
                root.isleaf = false;
                return IsFreeNode(root);
            }
 
            // else string is not present in TST and
            // return 0
            return false;
        }
 
        // CASE 3 Key is prefix key of another long
        // key in TST.
        if (s[level] < root.key) {
            return DeleteNode(ref root.left, s, level);
        }
        if (s[level] > root.key) {
            return DeleteNode(ref root.right, s, level);
        }
 
        // CASE 1 Key may not be there in TST.
        if (s[level] == root.key
            && DeleteNode(ref root.eq,
                          s.Substring(level + 1),
                          level + 1)) {
            // delete the last node, neither it has
            // any child nor it is part of any other
            // string
            root.eq = null;
            return !root.isleaf && IsFreeNode(root);
        }
 
        return false;
    }
 
    // Driver function
    static void Main(string[] args)
    {
        Node root = null;
 
        root = InsertNode(root, "CAT");
        root = InsertNode(root, "BUGS");
        root = InsertNode(root, "CATS");
        root = InsertNode(root, "UP");
 
        int level = 0;
        char[] str = new char[20];
 
        Console.WriteLine("1. Content of the TST before deletion:");
        Display(root, str, 0);
        Console.WriteLine("\n2. Content of the TST after deletion:");
        DeleteNode(ref root, "CAT", level);
        Display(root, str, level);
    }
}
 
//This code is Contributed by NarasingaNikhil


Java




// Java program to demonstrate deletion in
// Ternary Search Tree (TST). For insert
// and other functions, refer
 
class Node {
    char key;
    boolean isLeaf;
    Node left, eq, right;
   
  // structure of a node in TST
    public Node(char key) {
        this.key = key;
        this.isLeaf = false;
        this.left = null;
        this.eq = null;
        this.right = null;
    }
}
   
 // class of a node in TST
class TST {
    public Node root;
   
    public void insert(String s) {
        root = insertUtil(root, s, 0);
    }
      // function to insert a Node in TST
    private Node insertUtil(Node root, String s, int i) {
        if (root == null)
            root = new Node(s.charAt(i));
   
        if (s.charAt(i) < root.key)
            root.left = insertUtil(root.left, s, i);
        else if (s.charAt(i) > root.key)
            root.right = insertUtil(root.right, s, i);
        else {
            if (i + 1 < s.length()) {
                root.eq = insertUtil(root.eq, s, i + 1);
            } else {
                root.isLeaf = true;
            }
        }
        return root;
    }
   
    // function to delete a string in TST
    public void delete(String s) {
        deleteUtil(root, s, 0);
    }
   
    private boolean deleteUtil(Node root, String s, int i) {
        if (root == null)
            return false;
   
        if (s.charAt(i) < root.key) { 
            deleteUtil(root.left, s, i);
        } else if (s.charAt(i) > root.key) {
            deleteUtil(root.right, s, i);
        } else {
             // CASE 4 Key present in TST, having atleast
        // one other key as prefix key.
            if (i + 1 == s.length()) {
                root.isLeaf = false;
                if (isFreeNode(root))
                    root = null;
            } else {
                deleteUtil(root.eq, s, i + 1);
            }
        }
        return true;
    }
// to check if current node has any child
// node or not
    private boolean isFreeNode(Node root) {
        return (!(root.left != null || root.eq != null || root.right != null));
    }
   
    public void print(Node root, String s, int level) {
            // delete the last node, neither it has
            // any child nor it is part of any other
            // string
        if (root == null)
            return;
   
        print(root.left, s, level);
        s += root.key;
   
        if (root.isLeaf)
            System.out.println(s);
   
        print(root.eq, s, level + 1);
        print(root.right, s, level);
    }
  // Driver function
    public static void main(String[] args) {
        TST tst = new TST();
        tst.insert("CAT");
        tst.insert("BUGS");
        tst.insert("CATS");
        tst.insert("UP");
   
        System.out.print("1.Content of the TST before deletion: \n");
        tst.print(tst.root, "", 0);
   
        tst.delete("CAT");
   
        System.out.print("2.Content of the TST after deletion: \n");
        tst.print(tst.root, "", 0);
    }
}
 
//This code is contributed by NarasingaNikhil


Output

1.Content of the TST before deletion:
BUGS
CAT
CATS
UP

2.Content of the TST after deletion:
BUGS
CATS
UP

This article is contributed by Yash Singla. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments